mcp-pinecone

Model Context Protocol server to allow for reading and writing from Pinecone. Rudimentary RAG

View on GitHub

Pinecone Model Context Protocol Server for Claude Desktop.

smithery badge

PyPI - Downloads

Read and write to a Pinecone index.

Components

flowchart TB
    subgraph Client["MCP Client (e.g., Claude Desktop)"]
        UI[User Interface]
    end

    subgraph MCPServer["MCP Server (pinecone-mcp)"]
        Server[Server Class]
        
        subgraph Handlers["Request Handlers"]
            ListRes[list_resources]
            ReadRes[read_resource]
            ListTools[list_tools]
            CallTool[call_tool]
            GetPrompt[get_prompt]
            ListPrompts[list_prompts]
        end
        
        subgraph Tools["Implemented Tools"]
            SemSearch[semantic-search]
            ReadDoc[read-document]
            ListDocs[list-documents]
            PineconeStats[pinecone-stats]
            ProcessDoc[process-document]
        end
    end

    subgraph PineconeService["Pinecone Service"]
        PC[Pinecone Client]
        subgraph PineconeFunctions["Pinecone Operations"]
            Search[search_records]
            Upsert[upsert_records]
            Fetch[fetch_records]
            List[list_records]
            Embed[generate_embeddings]
        end
        Index[(Pinecone Index)]
    end

    %% Connections
    UI --> Server
    Server --> Handlers
    
    ListTools --> Tools
    CallTool --> Tools
    
    Tools --> PC
    PC --> PineconeFunctions
    PineconeFunctions --> Index
    
    %% Data flow for semantic search
    SemSearch --> Search
    Search --> Embed
    Embed --> Index
    
    %% Data flow for document operations
    UpsertDoc --> Upsert
    ReadDoc --> Fetch
    ListRes --> List

    classDef primary fill:#2563eb,stroke:#1d4ed8,color:white
    classDef secondary fill:#4b5563,stroke:#374151,color:white
    classDef storage fill:#059669,stroke:#047857,color:white
    
    class Server,PC primary
    class Tools,Handlers secondary
    class Index storage

Resources

The server implements the ability to read and write to a Pinecone index.

Tools

Note: embeddings are generated via Pinecone’s inference API and chunking is done with a token-based chunker. Written by copying a lot from langchain and debugging with Claude.

Quickstart

Installing via Smithery

To install Pinecone MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install mcp-pinecone --client claude

Install the server

Recommend using uv to install the server locally for Claude.

uvx install mcp-pinecone

OR

uv pip install mcp-pinecone

Add your config as described below.

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

Note: You might need to use the direct path to uv. Use which uv to find the path.

Development/Unpublished Servers Configuration

"mcpServers": {
  "mcp-pinecone": {
    "command": "uv",
    "args": [
      "--directory",
      "{project_dir}",
      "run",
      "mcp-pinecone"
    ]
  }
}

Published Servers Configuration

"mcpServers": {
  "mcp-pinecone": {
    "command": "uvx",
    "args": [
      "--index-name",
      "{your-index-name}",
      "--api-key",
      "{your-secret-api-key}",
      "mcp-pinecone"
    ]
  }
}

Sign up to Pinecone

You can sign up for a Pinecone account here.

Get an API key

Create a new index in Pinecone, replacing {your-index-name} and get an API key from the Pinecone dashboard, replacing {your-secret-api-key} in the config.

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
    uv sync
    
  2. Build package distributions:
    uv build
    

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
    uv publish
    

Note: You’ll need to set PyPI credentials via environment variables or command flags:

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

npx @modelcontextprotocol/inspector uv --directory {project_dir} run mcp-pinecone

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Source Code

The source code is available on GitHub.

Contributing

Send your ideas and feedback to me on Bluesky or by opening an issue.